Trends in the Aerostructures Composite Supply Chain

SpeedNews Aerospace Raw Materials & Manufacturers Supply Chain Conference

March 2011

Tim Shumate
ATK Aerospace Structures

tim.shumate@atk.com
Part Of A $4.8 Billion Corporation
Three Major Manufacturing Facilities
Over 50 Years Of Experience
 • Automation
 • Large Primary Structure

Markets:
 • Space And Launch Vehicle Structures
 • Military Aircraft Structures
 • Commercial Aircraft Structures

Growth Programs:
 • F-35 Primary Structures – Wings, Engine Inlet Ducts and Engine Nacelles
 • A350 Stringers and Frames
 • GEnx Fan Containment Case
 • Rolls Royce Trent XWB Rear Fan Case
 • Demonstration Contracts
Agenda

Background

Trends
 ➢ Market
 ➢ Technology

Summary

B748-8 with ATK Engine Fan Containment Case on Board
Background
Background: Composites

Combination of Fiber (Strength/Stiffness) and Resin (Form and Load Transfer)

Advantages:
- “Additive Process”
- Light Weight
- Near Net Mold
- Unitized Construction (Reduced Part Count)
- Fatigue Resistant
- No Corrosion Issues

Differences
- Non Conductive
- Quality Is Process Dependent
- Design
- Damage Tolerance / Detection

Delta Launch Payload Fairing – ATK Iuka, Mississippi
Background: Traditional Manufacturing Flow

Material Mfg: “Prepreg” Resin/Fiber Combination

Hand Lay Up

Tape Laying

Fiber Placement

Lay Up Or Lamination: Hand Or Automated Processes

Cure: Temperature and Pressure

Machine NDI Assembly
A Capital Intensive Business

- Clean room: $100+ / sf to modify
- Automated Tape Layer / Fiber Placement Machine: $3 - 15M
- Autoclave: $1 - 10M
- Non Destructive Testing: $1 - 7M
- Machining Center: $2 - 15M
The Trend Driving the Trends
The Opportunity: We Have Been Waiting For This…

“Fly away” Composite Structures in Mlb.

Assumes no Airbus / Boeing NSA until after 2020
Assumes B777X in 2018
MFW: F-16, F-18, F-22, F-35, Rafael. Eurofighter, C-17 & A40M
Future Trends

Industry Impact
Technology
Aerostructures Industry in Transition

B767 / A330

• Aircraft Structure 5 - 15% Composite
• Majority of Suppliers Focused on Metal Based Processes
• Composites Expertise Limited
 • Automation Domain of the OEM
 • Labor Intensive Composite Manufacturing at Small and Foreign Companies

B787 / A350

• Aircraft Structure 55% Composite
• Composites Expertise Expanding
 • Automation Domain spread to Large Partner / Tier 1’s, Some Tier 2’s
 • New Composite Manufacturing Processes at Tier 2 and Tier 3’s
• Supplier Base Split Between Metal and Composite Based Processes

People – Different skills
Capital Investment – Different Equipment / Facilities
Process Development – Different Processes

Carpe Diem: Spirit’s Investment in B787 $500M+
Trend 1: Who Can Afford the Transition?

1. Large companies can afford it
2. Mid size companies will struggle
3. Many small will not transition
Trend 2: Divergence of Market Needs

1980’s
- Military applications tech development
- Shared similar rate production needs
- US / EU lead structures industry

1990 – 2000’s
- Commercial benefitted from development
- Beginning of off shoring
- Large scale commercial use begins
 - 5X military use in lbs

2010’s
- Commercial will be 20x military use in lbs
- Traditional suppliers
- New suppliers in Asia, Middle East
- Divergence in requirements – Commercial vs Military
 - Long vs short production runs
 - Efficient integrated structure vs “Multifunctional” structure
 - Open supply base vs closed supply base

What will be the impact on the industrial landscape?
Trend 3: Automation...Continues

Evolution of Composites Processing

Composite content

- Wet Hand layup
- Hand layup
- Resin Infusion
- Other
- Auto Tape Lay
- Auto Fiber Placement

Composite Content
Trend 4: Reduced Assembly & Part Count

“Black Aluminum”
- Composite components
- Assembled together

Co-cured / Assy of Sub-Components
- Composite skin/stringer sub section
- Assembled together
- Example B777 tail, A330 tail, A380 CWB
- B787 fuselage barrel (skin/stringer)

Co-cured Sections
- Stitched / infused technology as an example
 - Composite Skin / stringer / frame or spar
Reduce Manufacturing Costs

Stitched Integrated Structure / Resin Infused Structures

- NASA/Boeing (PRSEUS)
 - R&D Wing (MD-80) 1992 – 2000
 - Fuselage – On going
- Bombardier
 - CSeries Wing
Trend 5: Reduce Processing Costs / Capital Cost

Out of Autoclave Processing

Eliminate:
- Capital expense (multi $M)
- Bottle neck (flow time)
- Recurring expense (energy and nitrogen)

Process:
- Oven / vacuum bag cure
- Self heating tools / vacuum bag cure

Application:
- Over sized structures
- Multiple small parts

Boeing 2010 SAMPE Display
Trend 6: Far Out Future Trend?

Additive Manufacturing – The Next Disruptive Technology?

- **Additive manufacturing (AM)** is defined by ASTM as the "process of joining materials to make objects from 3D model data, usually layer upon layer, as opposed to ‘subtractive manufacturing’ (machining) methodologies”

- **Metal or plastics deposited 20 um at a time, layer by layer**

Photographs via Morris Technologies
Summary of Trends

1) Trend toward increased use of composites – growth is in the commercial market
2) Capital intensive business
3) Market consolidation / restructuring – “creative destruction”
4) Market requirements divergence – what is the impact?
5) Automation will continue
6) Design and manufacture to reduce part count
7) Reduce dependence on large capital equipment
8) Potential “disruptive” technologies on the horizon
Contact:
Tim Shumate
Business Development
(801) 698-2719
tim.shumate@atk.com
Evolution of the Industry

Early 1980’s
- **OEM’s (Many)**
- **Tier 1’s**
- **Tier 2 (Few)**
- **Materials Suppliers (Many: 8 - 10)**

- **Design**
- **OEM Controls Processes**

- **Result:**
 - High costs
 - Limited commercial use

1990’s
- **OEM (Consolidation)**
- **Design Responsibility**
 - **Tier 1’s**
 - **Tier 2 Build To Print (BTP)**
 - **Low Cost Zone (10 - 20)**
- **Materials Suppliers (Consolidation)**
- **OEM Controls Specs**

- **Result:**
 - Tier 1 & 2 loose design skills
 - Automation domain of OEM and Tier 1’s
 - Death of innovation at the Tier 2 level

2000’s
- **OEM**
- **Partner**
- **Tier 1**
- **Tier 2 (20+)**
- **Materials Suppliers (3+)**

- **Result:**
 - Move to global partner model
 - Industry transitions to new technology

- **New Technology - Military driven**
- **US / EU focused supply base**
- **Innovation from Small Companies**
- **Design via supply base**

- **OEM’s “Composites are strategic”**
- **OEM’s take control of technology**
- **Offsets help sell aircraft to Asia**

- **Result:**
 - High costs
 - Limited commercial use